C.U.SHAH UNIVERSITY Summer Examination-2019

_

Subject Name: Quantum Mechanics

Subject Code: 4	SC06QUM1	Branch: B.Sc. (Physics)	
Semester: 6	Date: 16/04/2019	Time: 10:30 To 01:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:	(14)
	a)	What do you mean by a Wavefunction?	1
	b)	Differentiate: Symmetric and Asymmetric Wavefunction	1
	c)	State the Pauli's Exclusion Principle.	1
	d)	Write the main difference between Normal Zeeman and Anomalous Zeeman Effect.	1
	e)	Give the expectation value for position in Quantum Mechanics.	1
	f)	What are quantum numbers?	1
	g)	List two conditions for an acceptable Wavefunction.	1
	h)	Define the term Probability density in Quantum Mechanics.	1
	i)	Draw the vectorial diagram for j-j coupling scheme.	1
	j)	Define the term Stationary State used in Quantum Mechanics.	1
	k)	What does Spin- Orbit Interaction mean?	1
	l)	Give the expression for Bohr Magneton.	1
	m)	Define Gyromagnetic Ratio.	1
	n)	Write the general normalization condition for a wavefunction.	1

Attempt any four questions from Q-2 to Q-8

Q-2		Attempt all questions	(14)
-	a)	Write a note on Wavefunction and its properties	6
	b)	Using the idea of Wave Mechanics derive TDSE	8
Q-3		Attempt all questions	(14)
-	a)	Explain in detail the operators in Quantum Mechanics	8
	b)	Give the necessary points for a wavefunction to be acceptable.	6
Q-4	,	Attempt all questions	(14)
-	a)	Derive Time Independent Schrödinger equation using Helmholtz's wave equation.	7
	b)	Give an account on Wavefunction for a free particle	7
Q-5		Attempt all questions	(14)
-	a)	Explain in detail about the normalization of a wavefunction.	6
		Page 1	of 2

	b)	Derive the TISE in Spherical Polar Coordinates and comment on the azimuthal	8
		solution of the same.	
Q-6		Attempt all questions	(14)
	a)	Solve the commutation relation: $[L_x, L_y] = ihL_z$	7
	b)	Explain in detail the Anomalous Zeeman Effect.	7
Q-7		Attempt all questions	(14)
	a)	Derive the energy eigen value for a one dimensional Harmonic Oscillator problem.	7
	b)	Write a note on Spin-Orbit coupling schemes used in Quantum Mechanics	7
Q-8		Attempt all questions	(14)
	a)	Elaborate on Larmor's Precession and hence define the term Gyromagnetic Ratio.	7
	b)	Discuss in detail the Zeeman Effect.	7

