\qquad

C.U.SHAH UNIVERSITY

Summer Examination-2019

Subject Name: Quantum Mechanics
Subject Code: 4SC06QUM1
Branch: B.Sc. (Physics)
Semester: 6 Date: 16/04/2019
Time: 10:30 To 01:30
Marks: 70

Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1
 Attempt the following questions:

a) What do you mean by a Wavefunction?
b) Differentiate: Symmetric and Asymmetric Wavefunction 1
c) State the Pauli's Exclusion Principle.
d) Write the main difference between Normal Zeeman and Anomalous Zeeman Effect.
e) Give the expectation value for position in Quantum Mechanics.1

f) What are quantum numbers? 1
g) List two conditions for an acceptable Wavefunction. 1
h) Define the term Probability density in Quantum Mechanics. 1
i) Draw the vectorial diagram for $\mathrm{j}-\mathrm{j}$ coupling scheme. 1
j) Define the term Stationary State used in Quantum Mechanics. 1
k) What does Spin- Orbit Interaction mean? 1
l) Give the expression for Bohr Magneton. 1
m) Define Gyromagnetic Ratio. 1
n) Write the general normalization condition for a wavefunction. 1
Attempt any four questions from Q-2 to Q-8
Q-2 Attempt all questions(14)
a) Write a note on Wavefunction and its properties 6
b) Using the idea of Wave Mechanics derive TDSE 8
Q-3 Attempt all questions(14)
a) Explain in detail the operators in Quantum Mechanics 8
b) Give the necessary points for a wavefunction to be acceptable. 6
Q-4 Attempt all questions(14)
a) Derive Time Independent Schrödinger equation using Helmholtz's wave equation. 7
b) Give an account on Wavefunction for a free particle 7
Q-5 Attempt all questions(14)
a) Explain in detail about the normalization of a wavefunction. 6
b) Derive the TISE in Spherical Polar Coordinates and comment on the azimuthal solution of the same.
Q-6 Attempt all questions
a) Solve the commutation relation: $\left[\mathrm{L}_{\mathrm{x}}, \mathrm{L}_{\mathrm{y}}\right]=\mathrm{ih} \mathrm{L}_{z}$ (1) 7
b) Explain in detail the Anomalous Zeeman Effect. 7
a) Derive the energy eigen value for a one dimensional Harmonic Oscillator problem.
b) Write a note on Spin-Orbit coupling schemes used in Quantum Mechanics 7

Q-8 Attempt all questions
a) Elaborate on Larmor's Precession and hence define the term Gyromagnetic Ratio. 7 b) Discuss in detail the Zeeman Effect. 7

